Misuse of Radioactive Material: First Responder Considerations

Prepared by
Brooke Buddemeier, CHP
LLNL Counter Terrorism and Incident Response Program
Lawrence Livermore National Laboratory*
brooke2@llnl.gov (925) 423-2627

Science in the National Interest

Lawrence Livermore National Laboratory

Department of Energy University of California Lawrence Livermore National Laboratory ensures national security and applies science and technology to important problems of our time.

First Responder Considerations

A Case Study: Goiania, Brazil 1987

- When a hospital changed locations, a radiation therapy unit was temporarily left behind.
- Scrap metal hunters found the unit and dismantled it for scrap metal (~ Sept 18th).
- The 1.4 kiloCi (1,400 Ci) Cs-137 source containment was breached during the process.
- Pieces of source distributed to family and friends.
- Everyone was impressed by "the glowing blue stones." Children & adults played with them.
- Serious radiological accident recognized on <u>Sept 29th</u> when Acute Radiation Syndrome symptoms where recognized by hospital staff.

Initial Response

112,000 people (10 % of Goiania's population) were surveyed at an Olympic Stadium.

- 250 were identified as contaminated
- 50 contaminated people were isolated in a camping area inside the Olympic Stadium for more detailed screening

20 people were hospitalized or transferred to special

housing with medical and nursing assistance

- 8 patients transferred to the Navy Hospital in Rio de Janeiro
- Residential contamination survey was initiated

Early Consequences

- Widespread contamination of downtown Goiania
- 85 residences found to have significant contamination (41 of these were evacuated and a few were completely or partially demolished)
- People cross-contaminated houses 100 miles away
- Hot Spots at 3 scrap metal yards and one house

Radiation Injuries and Uptakes

4 fatalities (2 men, 1 woman and 1 child)

 28 patients had radiation induced skin injuries (they held/played with the source for extended periods)

50 people had internal deposition (ingestion)

FIG. 9.3. 3-30 days after exposure. The skin was excised. A raw reddish surface is covered with a delicate layer of fibrinous exsudate. Note the centripetal character of the healing process and the attempt of re-epithelialization.

Conclusions

IAEA-TECDOC-1009

- Long and expensive cleanup effort.
- Profound psychological effects such as fear and depression on large populations
- Isolation and boycott of goods by neighbors

Dosimetric and medical aspects of the radiological accident in Goiânia in 1987

INTERNATIONAL ATOMIC ENERGY AGENCY | A | E | A

June 1998

Response to a Radiological Incident ~ Contamination ~

- Monitor and isolate contaminated area
- Evacuate and "gross decon" victims (removal of outer clothing is an effective gross decontamination method)
- Avoid breathing in radioactive material
 - Shelter in place (close windows, turn off heating and A/C)
 - Evacuate, when safe to do so
 - Wear respiratory protection
- Radioactive material will not be uniformly distributed.
 Radiation "Hot Spots" near the source of the event will be a hazard.

Response to a Radiological Incident ~ Radiation ~

- Time: Limit the time spent in an areas of high radiation
- Distance: Exposure decreases dramatically as you increase your distance from the source.

Shielding: Radiation is blocked by mass.
 When practical, operate behind objects

Radiological Considerations for Public Protective Actions

- The EPA has developed Protective Action Guides (PAG) that help responders determine when evacuation is necessary:
 - Shelter & Evacuation PAGs are based on 1 & 5 rem exposures to the public.
 - Emergency phase PAGs are based on a 4 day exposure to "re-suspended" material and is dependent on weather.
 - Developed for acute exposures (such as at a power plant accident), these guidelines are conservative for chronic internal exposures.

Example: Brazil's 1.37 kCi (1,370 Ci) Cs-137 Source Made Into a "Dirty Bomb"

- Despite the accident in Brazil, sources of this strength are very difficult to obtain.
- This model assumes "worse case" in that:
 - The source was 100% aerosolized
 - Lots of explosive (~ 10 sticks of dynamite)
 - Presumes exposed populations "stood outside" during the exposure period.
 - Effects dependent on weather

Detectable Ground Contamination Can be Found Miles Downwind

San Francisco Example: Ground Contamination Can be Detected East of Berkeley Hills

HYPOTHETICAL

Release: 1.3 KCi CS-137 RDD with 5 lbs HE Deposited Contamination

Color	Level (uCi/m²)	Area (km²)	Description
	20	5.4	Take measures to prevent cross contamination.
	2	59.04	Detectable with "hot dog" GM
	0.2	409.34	Detectable with "Pancake" GM

Release location: San Francisco Police Department, 850 Bryant 37° 46' 31" N 122° 24' 15" W

100% Aerosolized release fraction

Strong afternoon west winds 18-25 mph.

Map size: 25 x 25 km

Despite Widespread Contamination, There Are Relatively Small Exposures

Los Angeles Example: EPA PAG Would Recommend Shelter/Evacuation of a Few Residential Blocks

Release: 1.3 KCi CS-137 RDD with 5 lbs HE 4-Day Dose (Internal + External)

Evacuation/Relocation PAG

Color	Level (Rem)	Area (km²)	Description
	1	0.026	Consider evacuation. Shelter in place if no evacuation.
	0.1	.42	
	0.01	3.84	

Release location: Burbank Police Department 34 10' 60"N, 118 18' 31"W

100% Aerosolized release fraction

Normal summertime west-northwest winds, 10-12 mph.

Map size: 6 x 6 km the auspices of the U.S. Department of Energy by the

Conclusion: First Responder Considerations

- Acute health effects from radiation dose are unlikely without prolonged, high-concentration exposure.
- Contamination readily detectable at long distances.
- Medical emergencies take precedent over radiological monitoring.
- Wear respiratory protection, isolate area.
- Use decontamination techniques (removing outer clothing most effective)
- Call for assistance

References

Transportation Emergency Preparedness Program (TEPP)

http://www.em.doe.gov/otem/program.html

Predictive Modeling Provided By

HotSpot Health Physics Code v2.0, Steve Homann LLNL National Release Advisory Center, LLNL (http://narac.llnl.gov/)

Gioania References Provided By

- IAEA-TECDOC-1009, "Dosimetric and medical aspects of the radiological accident in Goiania in 1987," June 1998, International Atomic Energy Agency.
- Radiation Emergency Assistance Services (SAER) from the Institute for Radiation Protection & Dosimetry (IRD), BRAZIL, Raul dos Santos.
- Dr. Henry B. Spitz, Professor of Nuclear and Radiological Engineering, Department of Mechanical, Industrial & Nuclear Engineering, University of Cincinnati
- Dr. Jose Julio Rozental Bernardo Dantas, Instituto de Radioprotecao Dosimetria, Brasil